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TRUST-REGION PROPER ORTHOGONAL DECOMPOSITION FORFLOW CONTROL

E.ARIAN*,M.FAHLt,ANDE.W.SACHS$

Abstract. Theproperorthogonaldecomposition(POD)isamodelreductiontechniqueforthesimula-
tionof physicalprocessesgovernedbypartialdifferentialequations,e.g.fluidflows.It canalsobeusedto
developreducedordercontrolmodels.FundamentalisthecomputationofPODbasisfunctionsthat repre-
senttheinfluenceofthecontrolactiononthesysteminorderto getasuitablecontrolmodel.Wepresentan
approachwheresuitablereducedordermodelsarederivedsuccessivelyandgiveglobalconvergenceresults.

Key words, properorthogonaldecomposition,Navier-Stokes,flowcontrol,reducedordermodeling,
trustregion

Subject classification.AppliedNumericalMathematics

1. Introduction. Wepresentarobustreducedordermethodforthecontrolofcomplextime-dependent
physicalprocessesgovernedbypartialdifferentialequations(PDE).Suchacontrolproblemoftenis hard
to solvebecauseofthehighordersystemthat describesthestate(alargenumberof (finiteelement)basis
elementsforeverypointinthetimediscretization).Theproperorthogonaldecomposition(POD)isareduced
ordermodelingapproachthathasbeensuccessfullyappliedforthesimulationandcontrolofcomplexsystems,
seee.g.[1,3,4,5,6,10,11,13].PODbasedreducedordermodelsareusedto avoidthedifficultyofdealing
withlargesystemsbyusingglobalbasisfunctionsinsteadoflocalbasisfunctionsfortheGalerkinprojection
oftheconsideredPDE.Oftenasmallnumberoftheseglobalbasisfunctionssufficesto obtainasatisfactory
levelof accuracy.

However,the limitednumberof degreesof freedomin thereducedorderPODmodelconstitutesits
mainweaknessfor optimalcontrolpurposes.SincethePODmodelis basedon thesolutionof the PDE
for a specifiedcontrol,it mightbea poormodelwhenthecontrollertakesthesystemfromits original
statetowardstheoptimalstate.Thereisnoguaranteethatthereducedorderprocesswill convergeto the
optimalcontrolof theoriginal(large)system.Thisdifficultyleadsusto proposea Trust-RegionProper
OrthogonalDecomposition(TRPOD)method,that constructssuccessivelyimprovedPODmodelsbased
onthe updatedcontrolvalues.By embeddingthePODtechniqueinto theconceptof trust-region(TR)
methodswithgeneral,non-quadratic,modelfunctionsandinexactgradientinformation[8,16]weareable
to proveconvergenceoftheproposedscheme.Thatapproachisrelatedwithoptimizationmethodsthat use
surrogateobjectives[2,7].

We concentrate on the application of TRPOD for flow control problems with Dirichlet boundary control

governed by the time-dependent Navier-Stokes equations (NSE) for viscous incompressible fluids.
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The paper is organized as follows. In section 2 we review the basic ideas of the POD and derive a

POD based control model. In section 3 the ideas of TRPOD modeling are presented. In section 4 global

convergence of the TRPOD scheme is treated. In section 5 several numerical examples are given. In section

6 we give a short discussion and some concluding remarks.

2. Reduced Order Modeling Using Proper Orthogonal Decomposition (POD). The starting

point for POD based reduced order modeling, for flow problems, is the availability of an input collection of

flow fields yi(x) = y(x, ti) (snapshots). Given the snapshot set

(2.1) ySNAP : {yl,..., yN},

the POD technique can be used to identify dominant spatial structures in the flow. For ease of notation we

assume that the snapshots are linearly independent. Then the POD procedure computes an orthonormal

basis

yPOD = {_/)1,..., _/)N)

for the subspace spanned by _?S'NAP and determines the M most important basis elements for the represen-

tation of the snapshot set in the above orthonormal basis.

The (accumulated) error of this optimal truncated basis representation is given by

N M N N

i:1 j:l i:1 j:Mq-1

where

N

yi= E(yi,¢j)¢j, i•{1,...,N},
j=l

and can be computed explicitly using singular value analysis [6, 10, 14]. By the choice of M a control of the

magnitude of _POD(M) is possible. We call • = {¢1,..., cM} a POD basis of order M.

Expanding the velocity field in terms of the POD basis,

M

y(x, t) = aj(t)¢J (x),
j=l

and projecting the Navier-Stokes equations onto the subspace spanned by the POD basis yields an M-

dimensional ODE system for the expansion coefficients:

(2.3) a(t) = F(a(t),t), a(0) = a °.

We call (2.3) a POD model of order M. Combining the solution of (2.3) and the expansion (2.2) results in

an approximation of the flow dynamics.

Let us suppose that the snapshot set (2.1) corresponds to a flow behavior forced by a certain Dirichlet

boundary control value, so we can replace (2.3) with the following (cf. [9, 13, 15])

(2.4) _(t) = F(a(t), u(t),t), a(0) = a °.

Here, we assumed the control to be of the following form (u denotes the Dirichlet data and g is a fixed

function):

u(x,t)=u(t)g(x) on ,c.

We call (2.4) a POD based control model of order M.



3. The Trust-Region Proper Orthogonal Decomposition (TRPOD) Optimal Control Ap-

proach. In the following we consider the problem of minimizing

1/0 /o(3.1) f(u) = _ ly(u) - ydl2 dx dt
obs

where y(x,t) = y(u;x,t) is the solution to the two dimensional Navier-Stokes equations for prescribed

Dirichlet boundary data, u(x, t), yd(x, t) is a desired state and _ob8 C _ is the observation volume for the

observation of the state on the domain _. With regard to the POD based reduced order modeling approach

we would ideally like to substitute the 'full' state equations with a POD based control model that could be

used for the optimal control process. In this case (3.1) is replaced with

1/0 /o(3.2) fPOD (U) = _ ly p°D (U) -- ydl2 dx dt
obs

where yPOD(u; X, t) is the solution of the POD reduced order model for control value u(t) (using (2.4) as the

POD based control model).

A priori it is not clear what is the best way to generate snapshots that are useful for the POD based

control procedure. A successful POD based control model should represent correctly the dynamics of the flow

that is altered by the controller. It is therefore natural to improve the POD based control model successively

by improving the snapshot set that is used to generate the POD basis.

First, we start with an 'arbitrary' initial control uo(t) and compute snapshots that correspond to the

flow behavior forced by uo(t). We use these snapshots to compute a first POD basis _(0) and to build up a

corresponding POD based control model. We denote the optimal control based on _(0) by ul(t). If we use

ul(t) for the computation of a new snapshot set and a new POD basis _(1) we can improve the initial POD

based control model. The new basis is an improvement in the sense that the minimization of the objective

function based on _(1) results in an 'optimal' control u2(t) such that f(u2) < f(ul). The solution process

for the reduced order control problem with respect to this second POD based control model can be started

with the last control function iterate ul(t).

If we proceed this way, i.e, given a current iterate, Uk(t), for the control we compute corresponding

snapshots, {y_,.. Nk", Yk }, compute a POD basis _(k), build a current POD based control model (PCM)k

(3.3) (PCM)k d(t) = F(a(t),uk(t),t), a(O) = a °

and use this model for the computation of the next iterate Uk+l (t) via the minimization of (3.2), we expect

the POD model to converge to a model that represents the flow at the optimal control of (3.1).

In order to guarantee the convergence of the above process we additionally embed it in a trust region

framework.

For given control value Uk we add a trust region constraint to the unconstrained optimization problem

(3.2) and minimize with respect to s

(3.4)

subject to

(3.5)

1/0T/ fPOD(u k -_-8) : _ [yPOD(u k -_-8) -- yd[2 dx dt
obs

11811L 



Here, yPOD(u k -_-8; X, t) denotes the reduced order flow solution for given control value Uk + s, where the

POD based control model is generated from the snapshots related to Uk. (_k denotes the trust region radius

at iteration k.

We define the local nonlinear trust-region model for the original objective f at point Uk by:

(3.6) mk(uk + s) := f'°V(uk + s).

We denote the gradient of the model function at the center point of the trust region by gk := Vmk(Uk). gk

is an approximation to the gradient of the objective function f.

The outline of the resulting TRPOD algorithm is given below (a stopping criterion should be added in

practice).

Algorithm 1: Outline of the TRPOD algorithm

Let u0, (_0, 0 < ?_1 < ?_2< 1 and 0 < _1 _ _2 < 1 _ 73 be given, set k = 0.

1. Compute snapshot set _Sk'NAP corresponding to control Uk.

2. Compute POD basis _(k) and build POD based control model (3.3).

3. Minimize the model function within the trust region

Sk = arg min mk(Uk + S)
Ilsll_<Sk

4. Compute f(uk + Sk) and set and

5. Update the trust-region radius:

Pk z
f(Uk) -- f(Uk + Sk)

mk(uk) -- mk(uk + Sk)

• If Pk _> ?72 : set Ukq_1 : Uk + 8k and increase trust region radius (_kq-1 : _/3(_k, set k = k + 1 and

GOTO 1.

• If ?]1 _Pk _ ?]2 : set Uk+l = Uk + Sk and decrease trust region radius (_k+l = 72(_k, set k = k + 1 and

GOTO 1.

• If Pk _< ?]1 : set Uk+l = Uk and decrease trust region radius (_k+l = 71(_k, set k = k + 1 and GOTO 3.

Following [16] we call an iteration successful if Pk > 71, i.e., the actual reduction

aredk(Sk) = f(Uk) -- f(uk + Sk)

is large enough compared to the predicted reduction

predk(Sk) = rnk(Uk) -- rnk(Uk + Sk).

In the case Pk __ 771,we call the iteration unsuccessful.



For a practical implementation of the above algorithm, in the spirit of trust region methods, two specific

modifications should be considered.

First, in the case of a rejection of the new trial step we can adapt the reduction of the trust region radius

to the step length of the unsuccessful step, in order to avoid a possible number of unnecessary reductions

that show no effect in the computation of a new descent direction.

Second, it is not necessary to compute an exact (global) minimum in step 3 of Algorithm 1. Instead, we

use the following step determination algorithm for the computation of a descent direction [16].

Algorithm 2: Step determination algorithm

Let

(3.7)

be given.

O<a<fl< 1, O<pl <1, v2>O, v3>O, 0<#_<1

Phase 1: Find h A such that

(3.8) rnk(Uk A A 2- Ilgkll; kgk) <_mk(uk) --

(3.9)

and

(3.10)

AIlXkgkll_<&

where/_ > 0 (if required) must satisfy

(3.11) mk(Uk-- B gk) > . k(uk) -- Z  llgkll 2

Phase 2: If 5k _ P3: Choose step Sk such that

(3.12) mk(Uk) -- mk(Uk + Sk) _> # (mk(Uk) -- mk(Uk -- AkAgk))

(3.13) IlSkll <_ 5k

In Phase 1 of Algorithm 2 we compute a step in the steepest descent direction that guarantees a sufficient

decrease in the model function. We also ensure that the step stays within the trust region and that the step

size is not too small. This means that Phase 1 can be interpreted as a substitute for the computation of

the Cauchy point in standard trust region methods for unconstrained optimization (UTR). Phase 2 allows

to leave the steepest descent direction if the trust region is sufficiently large. Similar to dogleg methods

for the approximation of Sk = argminllsil_<5 k rnk(Uk + S) in the quadratic model function case by using a

descent direction that includes a certain part of the step into the steepest descent direction and the (Quasi-)

Newton direction, the above algorithm first guarantees a sufficient decrease in the model function by using

the steepest descent direction (Phase 1) and then it allows an optional modification of the step direction in

Phase 2. For Algorithm 2 the following result holds whose proof can be found in [16].

LEMMA 3.1 (Toint '88). Provided that (3. 7) holds, there always exists a step Sk satisfying the conditions

-



4. Convergence Results. In the context of trust region methods we can interpret the TRPOD ap-

proach for the optimal flow control problem as a trust region method with a non-quadratic model function

[16].

For this purpose we consider a discretization of (3.1), (3.6) such that f, rna : _n _+ _. For a given u0

in the control space N, let/do be an open convex subset containing the level set £0 defined by:

£0= f(u)_<f(u0)}cu0c_u

We assume that f satisfies the following standard assumptions:

* f is continuously differentiable on b/0,

* f is bounded below on b/0,

* Vf is Lipschitz continuous with constant L on/do.

We emphasize the fact that unlike common quadratic trust region model functions mk(Uk + s) is not

quadratic in s. Furthermore, for the model function ma based on POD we have

(4.1)

and

(4.2)

rna(ua) ¢ f(Uk)

gk = Vmk(Uk) # V f(Uk),

i.e., both the model function value at the trust region's center point and the gradient of the POD derived

model function are inexact. We assume the models mk to satisfy the following properties [8, 16]:

* each mk is differentiable

* there exists a positive integer, N, such that the gradient of each model, gk, satisfies the following

inequality for k > N,

(4.3) I(gk - Vf(uk))Tskl <_
IlgkllII kll

for some user-specified constant _ > 0, where sk is the step according to Alg. 2.

Condition (4.3) requires that the normalized reduced order directional derivative in descent direction ap-

proximates the normalized full directional derivative sufficiently well in the limit.

Based on the above assumptions we prove the convergence of the TRPOD scheme using techniques

similar to the standard trust region method for unconstrained optimization. Specifically, we use results of

Toint [16] concerning trust region algorithms with non-quadratic model functions, and Carter [8] who also

treated trust region algorithms with inexact gradient information.

For convergence proofs of standard trust region methods with inexact gradients an essential condition

is the sufficient decrease condition

(4.4) f(uk) - f(uk + sk) > _c Ilgkll min{Sk,
Ilgkll

- _J

for some c> 0 and where IIHkll denotes the norm of the Hessian of the model function.

In the general nonlinear model function case we have to derive an analogous sufficient decrease condition

by other means. We define the following estimate of a function's curvature along the step s based at a point

u [16]:

2
(4.5) w(f,u,s) := ,_7_(f(u + s) - f(u) - V f(u)T s).

IlSll"



(4.6)

Then

The following theorem gives a lower bound to the predicted decrease in the model function [16].

THEOREM 4.1 (Toint '88). Assume that NgkN _ 0 and define according to Algorithm 2

0 when Aft is undefined02k :---- 02(mk,Uk,--/_Bk gk) when AkB is defined

C_k >0

and there exists a constant c8 > 0 such that Algorithm 2 produces a step Sk with

(4.7) mk(Uk) - mk(Uk + Sk) >_ CsIIgkll 2 min{llgkll2/(1 + Wk),Sk}.

As an immediate corollary we get the following result, analogous to the sufficient decrease condition

(4.4), that describes the decrease in the objective when the iteration is successful [16].

COROLLARY 4.2. Let the assumptions of Theorem 4.1 be satisfied and assume that the k-th iteration

was successful. Then

f(ua) - f(Uk+l) _> ?]lCsllgkll 2 min{llgall2/(1 + wa),Sa}.

The next lemma is required in the global convergence proof (cf. [8]). Its proof follows from the definition

of Algorithm 2.

LEMMA 4.3. Let {Sk} be a sequence of steps computed by Algorithm 2 and {gk} the sequence of the

model gradients. We define

8 T-- kgk

(4.8) cosOk .-Ilskll Ilgkll"

ff liminfk-_o_ NgkN > 0 and limk-_o_Sk = 0 then

(4.9) lim cos Ok = 1.
k--+oo

We now give the main convergence theorem for the TRPOD method.

THEOREM 4.4. Let f satisfy the standard assumptions. Assume that {Uk } is a sequence of iterates

generated by Algorithm 1 with step determination according to Algorithm 2 and that there exists a positive

integer, N, such that

(4.10) I(gk -- Vf(Uk))Tskl < _ for all k > N
IlgkllIlskll

for some _ with 0 < _ < 1 - 72. We define

(4.11) bk := 1 + max{max{wi, Iw(mi, ui, si)l}, i = 0,..., k}

and assume that there exists some constant Cb> 0 such that

(4.12) bk < Cb for all k > N.



Then

lim inf [Igk[I --- O.
k--+oo

Proofi The proof follows by contradiction. We assume that

(4.13) liminf IIgkll _> c
k--+oo

for some c > 0. Using Corollary 4.2 we get

OO

(4.14) E 5k < oo
k=0

using standard arguments [8]. For k sufficiently large with (4.5) and (4.8) we have

(4.15)

1--pk =

<

<

rnk(Uk + Sk) -- rnk(Uk) -- (f(Uk + Sk) -- f(Uk))

mk(uk + sk) -- mk(uk)

lllskll2_(._k,uk,sk ) Ts _+gk k (lllskll2w(f, uk,Sk) ÷ Vf(uk)TSk)

T slllskll2_('_k,Uk,Sk) +a k

I(Vf(uk) - gk)TSkl + lllskll2lw(f, Uk, Sk) - w(rnk, Uk, Sk)l

T s--a k -- lllskll2_('_k, Uk, Sk)

I(Vf(ua) -ga)rsal + lllsall2(lw(f, ua, sa)l + Iw(ma, ua, sa)l)
1

IlgkllIlskllcos ok - _Ilskll2_(._k, uk, sk)

Ilgkllllskll 2 Ilgkllt' t J,

l_lt_m uk,sk)cosOk-- 2 IIgkll k k,

The Lipschitz continuity of Vf leads to

(4.16) w(f, Uk, Sk) < L

where L is the Lipschitz constant of Vf. Combining (4.16), (4.11) and IIskll _< 5k yields

(4.17) 1 - Pk _<
I(VY(_k)--gk)%kl 1 II_kll(r bk)IlgkIIIlskll ÷ 2 Ilgkll%_÷

1 sl_J[o2/fy t Uk ' Sk )cosOk-_llgkl I k k,

Now we can use (4.9), (4.10),(4.11), (4.12), (4.13) and 8k --+ 0 to deduce that

(4.18) lim (1--pk) <(J<l--r12.
k--+_

The above limit implies that there exists k with Pk > ?]2 for all k _> k such that the trust region radius 5k is

not reduced for all k _> k, leading to a contradiction with 5k -+ 0 for k -+ oc. []

Remark: Since w(rnk, Uk, Sk) is a measure for the model's curvature in step direction, assumption (4.12)

is an analogue to the standard assumption of uniformly boundedness of the models Hessian in the quadratic

model function case (cf. [12]).



TABLE 5.1

TRPOD Parameters

TR Framework

?_1, ?_2 0.25, 0.75

71, 72, 73 0.5, 0.5, 2

Step Determination

_, fl 0.25, 0.75

Pl, P2, P3, # 0.1, 0.1, 0.1, 1

5. Numerical Results. In this section we present numerical studies of the TRPOD based control

method applied to the standard driven cavity test case. All flow calculations were carried out with the flow

solver FEATFLOW [17] at Reynolds number Re = 200, on the time interval [0, 5], using a uniform grid. The

parameters for the TRPOD algorithm are given in Table 5.1.

Two examples are in order. In the first example we choose a small observation domain (1.44% of _)

and a small control space (7 control variables). In that example the problem is small enough so that the

assumptions of Theorem 4.4 can be verified explicitely. In the second example we choose the entire cavity

to be the observation domain and the control space is of maximum dimension (167 control variables). The

purpose of this example to illustrate the significant change in the POD basis due to the changes in the

control input, and to demonstrate the effectiveness of the TRPOD method for larger scale problems. In that

example we did not verify the assumptions of Theorem 4.4 due to the large number of control variables.

Example 1. In the first example the control of the cavity flow is the top wall velocity (and there

is no control action on the bottom wall, i.e., yl = y2 = 0 on , hot). We reduce the number of control

variables by restricting the control space using the expansion u(t) R= _k=lUk_k(t) with _l(t) -- 1 and

_2k(t) = cos(2krrt/T), _2k+l(t) = sin(2krrt/T), k = 1, 2,..., 7, (R = 7).

For this example, the desired state yd corresponds to

ffd = (0.8, 0.1, --0.3, 0, 0.1, --0.3, 0).

Furthermore, we chose _ob8 = [0.44, 0.56] X [0.44, 0.56] in the center of the domain _ = [0, 1] x [0, 1] and

initialized the TRPOD algorithm with uo(t) - 0.01 and 5o = 0.25.

Table 5.2 lists the values of the objective function, f(uk), and the model function at the beginning of

each iteration k, m(uk). The trust region radius, 5k, the computed step length, I]Skl], the quotient of achieved

reduction to the predicted reduction, Pk, and the number of POD basis elements, M, at the beginning of

each TRPOD iteration. Furthermore, for this example we checked if the gradient error condition (4.10)

(5.1) _k := I(gk -- Vf(Uk))T8kl < 1 -- 72
IlgkllIlskll

is satisfied. The values of _a are also shown in Tab. 5.2 so that we can realize that _a _< 0.25 holds for k > 1.

Based on the values of sa, ma(ua), ma(ua+sa) and ga we found that (4.12) is satisfied with ba <_ Cb= 2.

We stopped the TRPOD algorithm after four iterations where the objective function value is reduced from

f(uo) = 5.99e-4 to f(u5) = 4.67e-7.

In Fig. 6.1 the control iterates are shown and compared to u d. Fig. 6.2 depicts u d, u4, and the solution

of the reduced order control problem (without TRPOD), Uovt. Figs. 6.3 and 6.4 illustrate the improvements

in the objective function for this example.

Example 2. We consider the boundary control of a cavity flow where a vortex evolves resulting from the

movement of the top wall of the cavity at a constant horizontal velocity. The control action is a horizontal

movement of the bottom wall of the cavity such that a second vortex evolves that counteracts the first vortex



0
1
2
3
4

f(Uk)

5.99658e-4 5.960310e-4

3.16328e-4 3.195711e-4

3.07127e-5 3.768390e-5

2.60034e-6 2.454936e-6

4.67446e-7

TABLE 5.2

TRPOD-Results (Example 1)

0.25 0.25 1.58 0.5355 4

0.5 0.46 1.51 0.1339 4

1 0.20 0.81 0.1183 4

2 0.22 0.97 0.1230 6

(see Fig. 6.5). Thus, the control variable, u(t), is the time-dependent magnitude of this horizontal boundary

velocity. The desired state, yd, corresponds to a predefined time-dependent bottom wall velocity, u d, such

that we are able to compare the computed optimal control to the exact solution. Due to a time discretization

of At ----0.03 we get n ----167 control variables, i.e., the control space is of maximum dimension. We choose

the observation domain to be the entire cavity, _ob8 = _, and initialize the TRPOD algorithm with initial

control of uo(t) - 0.1 (constant over time) and initial TR radius of 5o -- 2.

Table 5.3 lists the values of the objective function, f(ua), and the model function at the beginning of

each iteration k, m(uk), the trust region radius, 5k, the computed step length, NSkN, the quotient of achieved

reduction to the predicted reduction, Pk, and the number of POD basis elements, M, at the beginning of

each TRPOD iteration.

In the beginning of the iterative process, the trust region constraint is active for the computed steps,

and the quotient, Pk, indicates that the trust region radius should be further increased, keeping the same

model, m(uk). However, in the TRPOD method, the state y(uk + Sk) is computed in the evaluation of the

quotient, Pk, thus we can use this new information to update the model (instead of keeping the previous

model). We stop the TRPOD algorithm after 5 iterations, where the objective function value is reduced

from f(uo) = 0.229239 to f(u5) = 0.000132.

0

1

2

3

4

5

TABLE 5.3

TRPOD-Results (Example 2)

f(Uk) ma(ua)

0.229239 0.118274

0.149097 0.148143

0.080427 0.080532

0.006864 0.008835

0.000246 0.000795

0.000132

2 2.00 2.36 5

4 4.00 1.27 5

8 6.84 1.47 5

16 2.87 0.93 6

32 0.29 3.61 8

Fig. 6.6 depicts the control iterates, Uk, and compared to the desired optimal control, u d. Fig. 6.7

depicts u d, u5, and the solution of the reduced order control problem without TR modifications, Uopt. In the

case without TRPOD we used a single POD based control model, corresponding to the initial control u0,

without imposing a TR constraint. Figs. 6.8 and 6.9 illustrate the improvements in the objective function.

Fig. 6.10 depicts vector plots of the first four POD basis functions corresponding to the initial control,

and Fig. 6.11 depicts similar plots corresponding to the computed optimal control. These figures illustrate

the significant change in the POD basis due to the changes in the control input.
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6. Discussion and Concluding Remarks. We present a robust, globally convergent, approach to

optimal control based on POD modeling. This approach can be interpreted in the context of trust region

methods using general nonlinear model functions with inexact gradient information. Convergence results

for this class of trust region methods carry over to the TRPOD method. Numerical experiments indicate

the effectiveness of this approach. Optimization without POD reduced order models requires the solution

of the full state equation and full sensitivity (or adjoint) equations for each 'value' of the control during the

optimization process. Using POD based control models we only have to solve the full state equation if we

intend to build a new model. Then we can perform a sequence of optimization steps using reduced order

gradient information until we have to update the model. This amounts in saving a lot of computational

work if the solution of the full state equation (and full sensitivity or adjoint equations) is computationally

expensive.

The numerical results also demonstrate that the use of POD for reduced order optimal control, based

on control input that is far from the solution, may lead to a large error in the approximated solution.

Unlike the traditional TR theory (see e.g. [2, 16]), we have ma(ua) _ f(ua). Still, we do not need to

change most of the conventional TR convergence theory, since the quality of the approximation of f(ua)

by ma (ua) does not enter into the proofs directly. However, we have to guarantee through condition (4.10)

that the gradient of the model function, Vma, approximates the gradient of the 'full' objective function,

V f, sufficiently well. In general we do not expect the model gradient, Vma, to be a good approximation of

the gradient, V f, unless sensitivity (or adjoint) information of the 'full' problem is taken into account. In

this context, it is still not dear, e.g., how to incorporate snapshots of the sensitivities into the POD model

without compromising the quality of the state approximation.
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